謝謝各位先進點進來 不好意思標題有點太簡陋! 想請問各位大大這兩個職位的職涯發展會差很多嗎? 我稍微查過發現前者碰SQL跟統計軟體居多而python為輔 後者則是偏向理論,用python建模之類的 本魯最近在找Data Scientist(DS)的工作 跟一位獵頭聯絡後,幫我投了一家兩個職位都有的公司,但後來才發現他幫我投的是Data Analyst(DA) 問了原因說是因為經驗比較淺所以要先從DA先做,過個一兩年再升DS 聽起來很像在唬嚨人,但查了發現也有網站說DA的下一步就是DS 因為自己也不是很清楚 所以想問一下各位大大的意見 先謝謝大家不吝回答! ——— DA的JD: 1.Familiar with statistics fundamentals such as linear/logistic regression, hy pothesis testing and binomial probabilities 2.Comfortable with SQL and Excel; experience with R/Python is a plus DS的JD 1.Statistics: must have strong experience in experimental design, A/B testing, linear/logistic regression, hypothesis testing 2.Machine Learning: must be comfortable with basics of model creation, evaluat ion, and deployment. 3.Programming: experience in Python and SQL required. -- ※ 發信站: 批踢踢實業坊(ptt.org.tw), 來自: 106.146.23.174 (日本) ※ 文章網址: https://ptt.org.tw/Soft_Job/M.1661871830.A.982
william0916: 有時候title看看就好 還是要了解實際工作內容08/30 23:17
longlyeagle: 唬人的啦08/30 23:21
jigfopsda: 看JD08/30 23:21
longlyeagle: 好DA重點是Domain Knowledge 説DA下一步是DS是不尊重08/30 23:24
longlyeagle: 專業08/30 23:24
Muzaffer: 有沒有富二代要包養08/30 23:24
libitum: 你該看看你自己的resume寫什麼再分別去比較兩職缺的JD啊08/30 23:25
libitum: recruiter當然會幫你推 他認為你比較適合的 這跟你標題無08/30 23:25
libitum: 關08/30 23:25
libitum: 有公司DA做得像DS DS卻像DA title根本沒那麼重要 技能組08/30 23:26
libitum: 才是你該考量的08/30 23:27
MIJice: 身邊有朋友被包養08/30 23:27
libitum: 看到你要找DS 卻把DS描述成這樣... DS也有很實務端的啊 08/30 23:28
libitum: 想要做理論的DS輪不到你 除非你有PHD先 TW也沒那麼多缺08/30 23:29
hsuchengmath: 那machine learning engineer 跟data scientist 還08/30 23:39
hsuchengmath: 有 research engineer 還有 algorithm engineer差在 08/30 23:39
hsuchengmath: 哪啊08/30 23:39
SpyTime: 亞洲最大包養平台上線了08/30 23:39
libitum: 那就問你有沒experience of experimental design?08/30 23:48
libitum: 如果沒有 又沒domain know-how 他怎可能會幫你推DS08/30 23:48
libitum: 你應該要確認這個DS role 是不是experienced role08/30 23:50
Findagreen: 謝謝l大! 我再問看看08/30 23:54
Findagreen: 阿我誤會了 那的確DA才是對的 08/30 23:55
Toth: 這個包養網正妹好多 是真的嗎 08/30 23:55
viper9709: 推一樓 08/31 00:06
NTUTM04: https://i.imgur.com/kfkxaTO.jpg 08/31 00:08
NTUTM04: 不過在台灣DA跟DS的界線並沒有那麼清楚,很多公司都是混 08/31 00:08
NTUTM04: 合的,而DE通常會是後端在擔任這部分的職能 08/31 00:08
samhsu: 因為很多公司的主管自己也分不清楚DA, DS, DE, MLE 這些 08/31 00:31
Asterix: 真的有這麼多人在找包養 08/31 00:31
samhsu: 職位的差異或怎麼互相合作或公司目前的階段需要哪個角色, 08/31 00:31
samhsu: 所以就看哪個名字潮就徵哪個,建議面試時問清楚資料團隊 08/31 00:31
samhsu: 的分工,主管講不清楚就別進去浪費生命了,8成是去當報表 08/31 00:31
samhsu: 工程師 08/31 00:31
kokolotl: 國外很多資料科學家做的事情跟數據分析沒兩樣 08/31 00:31
AdamShi: 有人可以分析一下包養平台的差異嗎 08/31 00:31
SYSQP: PHD嗎?不是PHD走這條路當砲灰居多 08/31 01:12
Bujo: 遇過自稱資料科學家的同事,整天演算法,不碰資料,遇到清資 08/31 08:44
Bujo: 料就推,模型不准怪後端08/31 08:44
CRPKT: 以正常職稱來考慮,你不會 ML 就和 DS 無關了08/31 09:55
AgileSeptor: 推一到十二樓,總之就是看 JD08/31 12:07
lezabo: 那個包養網人最多XD08/31 12:07
WWIII: Analyst 不需要會程式語言啊 08/31 17:27
longlyeagle: SQL被正式認定是一種程式語言了08/31 17:50
longlyeagle: ^^^^ 其實也沒多正式 就是幾個程式語言評比決議08/31 17:51
drajan: 8年前在Soft_Job上幾乎沒有人在討論DS 現在大家都知道了08/31 17:59
drajan: 頗有趣08/31 17:59
silberger: 我妹上包養網被我發現= =08/31 17:59
ap954212: Title看看就好08/31 21:08
chocopie: 在台灣甚麼都會變成全包 08/31 23:23
chocopie: 很多公司自己也搞不清楚 08/31 23:24
germun: 在台灣DS/DE八成沒差 因為你什麼都要會 08/31 23:25
germun: 不是搞不清楚 是老闆要你做什麼就做什麼 當然一人當多人用 08/31 23:26
xayile: 隔壁桌的人竟然在討論包養... 08/31 23:26
a159753: 日本? 09/01 14:09
breccia: DS-統計/ML/DL訓練模型要強 理論強. DA-資料分析/視覺化 09/01 21:56
breccia: 講故事 幫助決策. DE-infra 大數據Data Lake, pipeline. 09/01 21:56
breccia: MLE-ML的infra, MLOps, 也要懂ML/DL, 將DS開發的模型部署 09/01 21:56
breccia: 上線 09/01 21:56
cazo: 樓上是不是被包養 09/01 21:56
QUINY: 雖然我是DS 但在公司其實是一條龍全包 什麼都要會 台灣企業 09/02 01:49
QUINY: 九成九一人當萬人用 09/02 01:49
GoalBased: 朋友之前在這家好像180~250 一天工作4h 09/02 20:22
GoalBased: 推錯偏了= = 09/02 20:22
cmelo1515: 推breccia大 簡單好懂 09/04 07:51
izilo: 未看先猜這包養 09/04 07:51
alice78226: 看看版上backprog BI和大數據的文章吧,個人覺得比較 09/07 15:55
alice78226: 符合實際情況 09/07 15:55
allen63521: 看JD 台灣每家公司對DA的認定範圍很寬 有的只是excel 09/14 01:02
allen63521: 拉一拉數字 有的要建模或是要做DE的東西 09/14 01:02