作者kuromu (kuromu)
標題[閒聊] .
時間2024-04-29 21:48:18
拉普拉斯/傅立葉變換之類的線性積分變換
可以不嚴謹的用矩陣作用在向量的變換做類比
為何微分方程常用拉普拉斯/傅立葉變換協助求解?
如果把線性微分方程寫成某個線性算子L作用在函數y
假設微分方程Ly=0具有某種對稱性
意思是經過某個變換(命名為R)後 方程的形式不變
也就是RLR*=L <—> RL=LR
那麼L和R往往有共同的特徵函數,可以同時對角化
所以求解線性微分方程,常常就是找出所有可能的R
找出對應的特徵函數,並取其張量積、線性組合表示通解
而拉普拉斯/傅立葉變換用到的指數函數
就是微分算子(D)的特徵函數
例如在ODE (L’y=0) 有DL’=L’D
所以拉普拉斯/傅立葉變換就是在對線性微分方程做對角化
因而能簡化求解
D對應的是什麼對稱性?微分算子是平移變換的無窮小生成元
也就是如果對y做無窮小的平移變換 變化量正比於Dy
--
※ 發信站: 批踢踢實業坊(ptt.org.tw), 來自: 114.47.100.162 (臺灣)
※ 文章網址: https://ptt.org.tw/Marginalman/M.1714398501.A.05E
推 DreaMaker167: 謝謝 工數100了 04/29 21:49